Feature extraction for SAR target recognition based on supervised manifold learning
نویسندگان
چکیده
On the basis of manifold learning theory, a new feature extraction method for Synthetic aperture radar (SAR) target recognition is proposed. First, the proposed algorithm estimates the within-class and between-class local neighbourhood surrounding each SAR sample. After computing the local tangent space for each neighbourhood, the proposed algorithm seeks for the optimal projecting matrix by preserving the local within-class property and simultaneously maximizing the local between-class separability. The use of uncorrelated constraint can also enhance the discriminating power of the optimal projecting matrix. Finally, the nearest neighbour classifier is applied to recognize SAR targets in the projected feature subspace. Experimental results on MSTAR datasets demonstrate that the proposed method can provide a higher recognition rate than traditional feature extraction algorithms in SAR target recognition.
منابع مشابه
Kernel generalized neighbor discriminant embedding for SAR automatic target recognition
In this paper, we propose a new supervised feature extraction algorithm in synthetic aperture radar automatic target recognition (SAR ATR), called generalized neighbor discriminant embedding (GNDE). Based on manifold learning, GNDE integrates class and neighborhood information to enhance discriminative power of extracted feature. Besides, the kernelized counterpart of this algorithm is also pro...
متن کاملSAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature
Automatic target recognition (ATR) in synthetic aperture radar (SAR) images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a hist...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملTensor Locality Preserving Projections Based Urban Building Areas Extraction from High-Resolution SAR Images
Currently, the majority of Manifold Learning algorithms applied for SAR image feature extraction are vector based; the For tensor based SAR images, a “convert to vector: process has to be taken before attribute extraction. During this process, curse of dimensionality would be occurred and information of space geometry structure could be lost. Those phenomenon are not conducive for target recogn...
متن کاملمدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کامل